Document Number: MK1320V Preliminary Datasheet V2.0

350W, 50V High Power RF LDMOS FETs

Description

The MK1320V is a 350-watt, internally matched LDMOS FETs, designed for applications including cooking, heating and medical with frequencies from 1000 to 1400 MHz.

It can be used for 1300MHz particle accelerator CW application, avionics and L band commercial pulse application.

•Typical Performance (on Innogration fixture with device soldered): Tcase = 25 degree C, Pulse CW signal, 100us 20% duty cycle, DD=50V, Idq=100mA

Freq(MHz)	P1(dBm)	P3(dBm)	P3(W)	EFF(%)@P3	Gain (dB)@P1
1300	55	55 56		57.5	19

CW signal, VDD=50V, Idq=100mA

Freq(MHz)	Pout(W)	Eff(%)	Power Gain(dB)
1300	340	53	16.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- . Input internally matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

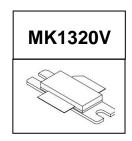

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	125	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case (See note 1)			
Tcase= 85°C, 1300MHz,100us, 20% duty cycle, 50V,	ZeJC	0.05	°C/W
Idq=100mA			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Innogration (Suzhou) Co., Ltd.

Document Number: MK1320V Preliminary Datasheet V2.0

Table 4. Electrical Characteristics (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	V		125		V
(V _{GS} =0V; I _D =100uA)	V _{DSS}		125		V
Zero Gate Voltage Drain Leakage Current				10	^
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}			10	μА
GateSource Leakage Current	_			1	^
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			ı	μΑ
Gate Threshold Voltage	$V_{GS}(th)$		1.6		V
$(V_{DS} = 50V, I_D = 600 \text{ uA})$	V _{GS} (III)		1.0		V
Gate Quiescent Voltage	V		2.1		V
$(V_{DD} = 50V, I_{DQ} = 100 \text{ mA}, \text{ Measured in Functional Test})$	$V_{GS(Q)}$		2.1		V

Functional Tests (In Innogration Test Fixture, 50 ohm system) : V_{DD} =50 Vdc, I_{DQ} = 100mA, f = 1300 MHz, Pulsed CW Signal Measurements(100us, 10%). Pin=4W

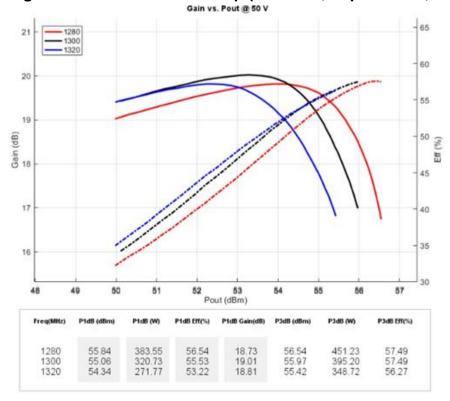
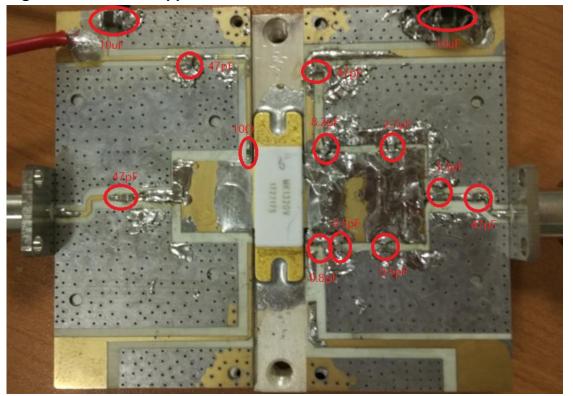
Output Power	P _{out}	320	W
Power Gain	Gp	19	dB
Drain Efficiency@Pout	η _ο	55	%
Input Return Loss	IRL	-7	dB

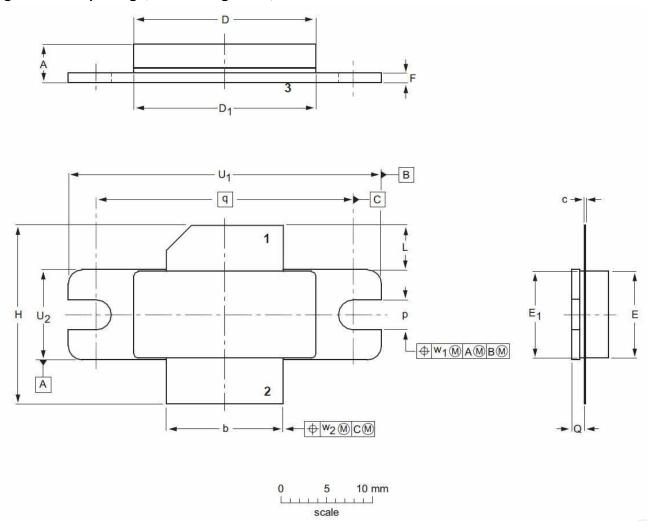
Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 Vdc$, $I_{DQ} = 100 mA$, f = 1300 MHz

VSWR 10:1 at 320W pulse CW Output Power	No Device Degradation
---	-----------------------

Innogration (Suzhou) Co., Ltd.

Figure 1: RF Pulsed CW sweep (Vdd=50V, Idq=100maA, 100us, 10%)


Figure 2: Picture of application fixture

Package Outline

Flanged ceramic package; 2 mounting holes; 2 leads (1—DRAIN、2—GATE、3—SOURCE)

UNIT	Α	b	С	D	D ₁	E	E ₁	F	н	L	р	Q	q	Uı	U ₂	W ₁	W_2
	4.72	12.83	0.15	20.02	19.96	9.50	9.53	1.14	19.94	5.33	3.38	1.70	07.04	34.16	9.91	0.05	0.54
mm	3.43	12.57	0.08	19.61	19.66	9.30	9.25	0.89	18.92	4.32	3.12	1.45	27.94 33.91	9.65	5 0.25	0.51	
inches	0.186	0.505	0.006	0.788	0.786	0.374	0.375	0.045	0.785	0.210	0.133	0.067	4.400	1.345	0.390	0.04	0.00
inches	0.135	0.495	0.003	0.772	0.774	0.366	0.364	0.035	0.745	0.170	0.123	0.057	1.100	0.380	0.01	0.02	

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-B2E					03/12/2013

Document Number: MK1320V Preliminary Datasheet V2.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/3/31	V1	Preliminary Datasheet Creation
2017/7/14	V2	Modified test data

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.